Selecting optimal multistep predictors for autoregressive processes of unknown order

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selecting Optimal Multistep Predictors for Autoregressive Processes

We consider the problem of choosing the optimal (in the sense of mean-squared prediction error) multistep predictor for an autoregres-sive (AR) process of finite but unknown order. If a working AR model (which is possibly misspecified) is adopted for multistep predictions, then two competing types of multistep predictors (i.e., plug-in and direct predictors) can be obtained from this model. We ...

متن کامل

Selecting Optimal Multistep Predictors for Autoregressive Processes of Unknown Order by Ching-kang Ing

We consider the problem of choosing the optimal (in the sense of mean-squared prediction error) multistep predictor for an autoregressive (AR) process of finite but unknown order. If a working AR model (which is possibly misspecified) is adopted for multistep predictions, then two competing types of multistep predictors (i.e., plug-in and direct predictors) can be obtained from this model. We p...

متن کامل

Multistep Prediction in Autoregressive Processes

In this paper, two competing types of multistep predictors, i+e+, plug-in and direct predictors, are considered in autoregressive ~AR! processes+When a working model AR~k! is used for the h-step prediction with h . 1, the plug-in predictor is obtained from repeatedly using the fitted ~by least squares! AR~k! model with an unknown future value replaced by their own forecasts, and the direct pred...

متن کامل

The Integration Order of Vector Autoregressive Processes

We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2) conditions (Johansen, 1996) is proved and polynomial cointegration discussed in the general setup.

متن کامل

Bayesian analysis of autoregressive moving average processes with unknown orders

A Bayesian model selection for modelling a time series by an autoregressive–moving–average model (ARMA) is presented. The posterior distribution of unknown parameters and the selected orders are obtained by the Markov chain Monte Carlo (MCMC) method. An MCMC algorithm that represents the parameters of the model as a point process has been implemented. The method is illustrated on simulated seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2004

ISSN: 0090-5364

DOI: 10.1214/009053604000000148